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ABSTRACT

Failure discounting is the practice of removing fractions of failures

from test data after corrective actions have been taken and no Failures

due to the same cause have reoccurred. This thesis examines the effect

of discounting failures and weighting test data on the accuracy of an

existing reliability growth model, labeled the Modified AMSAA model.

Computer simulation is used to evaluate the mean and mean square error

of failure rate estimates under the model for a variety of reliability

growth patterns each with several discounting and weighting scenarios.

Exponential failure times are assumed and testing is truncated at two

failures in each test phase. Failure discounting tended to decrease the

mean square error slightly for growth patterns with a continual drop in

failure rate for each new test phase, but tended to increase the mean

square error for other patterns. The Modified AMSAA model is also shown

to be superior to the standard AMSAA reliability growth model in bias and

mean square error. No discernable benefits due to weighting the data were

detected.
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THESIS DISCLAIMER

The reader is cautioned that computer programs developed in this research

may not have been exercised for all cases of interest. While every effort

has been made, with time available, to ensure that the programs are free

of computational and logic errors, they cannot be considered validated.

Any application of these programs without additional verification is at

the risk of the user
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I. BACKGROUND

The AMSAA model is a widely used cumulative reliability growth

model. It was developed by the Army Material Systems Analysis Activity

(AMSAA) at Aberdeen Proving Grounds, Maryland. Failure discounting

applied to this and other reliability growth models is becoming popular.

In previous work by Woods [ref. 1] the Modified AMSAA model appears to

provide more accurate estimates of current reliability for various

patterns of reliability growth than does the standard AMSAA model.

The primary purpose of this thesis is to determine the effect of

failure discounting and data weighting on the Modified AMSAA model.

Secondary purposes are to compare the accuracies of the AMSAA model and

the Modified AMSAA models. These comparisons are made for a variety of

reliability growth patterns, failure discounting rates, and weighting

scenarios.

Throughout this thesis the phrase 'test phase' refers to a collection

of tests wherein the nontruncated failure times of all items tested are

independent and exponentially distributed with a common failure rate.

Within each phase, n items are tested until r fail, and testing is

performed sequentially by phase. Testing in phase i+1 is initiated after

the failures in phase i have been analyzed and appropriate changes have

been made. Both n and r are input parameters to the simulation program

used to generate test data.
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In application of the Modified AMSAA model, if the data has a Weibull

distribution with shape parameter, R, then raising the data to the f power

yields exponential data. Applying the model to this transformed data

should yield estimates as accurate as those indicated in this thesis.
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I. THE AMSAA RELIABILITY GROWTH MODEL

The AMSAA reliability growth model has its roots in a report by J. T.

Duane of General Electric Company published in 1962. In this report he

presented observations on failure data for five types of systems during

their development programs at Cpneral Electric. His analysis revealed

that the observed cumulative failure rate versus the cumulative operating

hours fell close to a straight line when plotted on log-log paper. That

is, if N(t) denotes the total number of failures observed in t hours of

testing and C(t) is the cumulative failure rate observed over that same

time, then log C(t) is almost a linear function of log t [ref. 2: p.29].

The model which Duane used to interpret those plots has a cumulative

failure rate estimate C(t) with expectation given by

E[C(t)] = E[N(t)/t] = )t -  (2.1).

Letting X = b and = 1-a results in

E[C(t)] = bt-a  (2.2).

Duane defined the instantaneous failure rate r(t) by d/(E[N(t)])/dt.

Applying this to E[N(t)] = XtO and differentiating yields

r(t) = Xitl-' = (1-a)bt-a (2.3),

where t denotes total accumulated test time [ref. 2: p.29].

The expression Xftl-1 is the failure rate function for the Weibull

distribution. This does not mean, however, that the failure times have

a Weibull distribution, because the underlying distribution of the failure

times changes each time a change is made in the hardware. It only means

3



that the f'ilure rate estimate r(t), as a function of the cumulative test

time, t, is changing in accordance with the expression in in equation

(2.3).

This model mixes data from different populations to obtain an

estimate of current reliability. This apparent weakness motivated the

development of the Modified AMSAA model. The unmodified AMSAA model is

also referred to as the cumulative AMSAA model in some graphs that follow.

"The AMSAA Reliability Growth Model assumes that system failures

during a development testing phase follow the (nonhomogeneous) Poisson

Process with Weibull intensity r(t) = X0t -1, where A > 0, f > 0." [ref.

2: p. 29) The parameters are estimated in the following manner where N

= the number of failures and X, = total test time up to ith failure.

r(t) = XBt - = (1-a)bt -a (2.4)

A A N
1-a N f (2.5)log(x,/xi)

A =A N
b A (XN) (2.6)

A AA, A A

r(t) = t,,= (1-a)bt-a (2.7).

Note that:
A

A N A A
r(T) = T T' (2.8),T T

which "...is equivalent to using the exponential method but purging

4



A

(1-fi)N failures" [ref. 2: p.30]. This indicates that the model is self

purging, and no further failure removal method is required. Some people

have developed failure discounting methods for this model.

5



III. THE MODIFIED AMSAA MODEL

The Modified AMSAA Model uses exponential regression to compute

estimates for a and b after each phase. Test time within each phase is

treated as an independent observation, and the estimator for failure rate

within each phase, given by equation (3.1), is used as the dependent

variable in the regression analysis. The cumulative AMSAA model requires

one estimate of a and b to cover all phases.

The Modified AMSAA model uses the same expression for current failure

rate as given in the AMSAA model, namely, XTTj = (1-a)b(TT,)a,where TT, is

the total accumulated test time over all phases at the end of phase j

[ref. 1: p. 3-1]. Within each test phase j, a failure rate estimate is

computed by

A 2FJ-1 FJ
AJ = 2FJ Ti if Fi > 1, or

A 0.J= 0.5 if Fi < 1. (3.1)

where F, is the number of observed failures in phase j, and T, is the total

accumulated test time in phase j. Explanation for the bias correction,

(2F,-I)/2Fj, is developed in Appendix A.

Let j denote the current phase of testing just completed, and let

i A

TTi = 2 Tk' Y1  = ln Xi, Xi = ln TT,, for i = 1,2,...,j. Let
k=1

6



Yj (Yl+Y 2+. . .+Yj)/j and X, = (Xl+X 2+.. .+Xj)/j. The current failure
A

rate estimate, XTTj is given by

A AA

XTTJ (1-a)b(TTj3 a (3.2).

A A

Equations for a, and b, are given by

- J

A I =1

Ji i

i=i i=i

A I A

b = exp(Y+ ajX,) (3.4)
1-a3

for j = 2,3 ..... The regression requires observations from at least two

test phases. The instantaneous failure rate estimate given by equation

(3.1) for j=1 is used for the first phase [ref. 1: p. 3-2]. Equations

(3.3) and (3.4) are developed in appendix A.

A. WEIGHTING

This model can be modified further by the application of regression

weights in an attempt to make it more sensitive to changes in failure rate

between phases. Weighted regression is generally used when some

observations are less reliable than others. Generally this implies

unequal variance among the observations [ref. 3: p. 77]. To accommodate

this phenomena, weights used in weighted regression are heavier for phases

with lower variance or more reliable observations. We can use a weighting

scheme based on estimated variance or just use a set of weights chosen by

some other scheme.

7



The principle of weighted least squares regression is to minimize

the weighted sum of squared differences between observed values and

predicted values, 2 w1 (Yi _ a _ " Xi) 2. In weighted regression the normal

least squares regression equations become

N

A 1 (X - X,) Yiwi
N (3.5) and

(X- X) w
A

a = Y. - 0 X. (3.6)

where X. and VW are the weighted averages of the data points, and the

linear relationship between Xi and Y is described by the model Y1 = a +

Xi [ref. 4: p. 89].

In this thesis, two weighting procedures are analyzed. In method

one, the weights are calculated within the program. In this case the

quantities w1  = fl/i are computed where f is a number between 0 and 1

chosen by the user as a parameter for the program. These quantities are

normalized to yield the weights. With this procedure, the data from the

current phase is always given the most weight when the instantaneous

failure rate is calculated for that phase. The smaller the value of f,

the greater the effect of weighting.

When the user chooses the weights (method two), the chosen values for

each phase, w, are read in from a data file. In both methods the w1

values are normalized to obtain weights, w,, to use in the regression

equations. The resulting weights are given by

8



wj
= * i = 1,2,...j (3.7).

k=1

When using regression weights with the modified AMSAA model,
A

the data pairs (In X, In TT,) are used in the weighted regression
A

equations as follows: Yi - In Xi, Xi - In TTi,

Yj = (w1Y1+w2Y2+...+w Yj)/j, and X= (wX1+w2X2+...+w Xj)/j

for i = 1,2,...,j and j = 1,2 ....

A - (Xi Xj) Yi wi

a3 = (3.8)
J(Xi - wj) 2  wi
i=1

A 1A _

A exp(YwJ+ ajXwj) (3.9)
1-ai

for j = 2,3 ..... As in the previous model, the instantaneous failure rate

estimate given by equation 3-1 or 3-2 for j=1 is used for the first phase.

B. FAILURE DISCOUNTING

Another modification that can be applied to this model is fractional

failure removal known as failure discounting. Some investigations have

been made on the application of failure discounting to discrete

reliability growth models [refs. 5 and 6]. What follows here is a brief

description of failure discounting from previous work.

Testing conducted during the initial stages of a particular system
often indicates a low reliability. Generally, weaknesses in the

9



configuration of the system or defects in the quality of its
components cause system failure. Test designs are established so
that the cause for these failures can be identified and corrected.
Theoretically, then, as a weakness or a defect is identified and,
hopefully, corrected the probability of that particular weakness or
defect reoccurring should be reduced. This reduction in the
probability of occurrence of a certain failure cause leads to
improved system reliability. This concept is fully utilized in
failure discounting.

In order to effectively discount previous failures it is critical
that the cause of the failure be properly identified. The level of
detail that one wishes to ascribe to this identification process is
dependent upon the type of system being evaluated and the purpose of
the test. If a complex system is being evaluated then a failure
cause may be failure of a certain component or sub component. The
precise element that caused system failure is not critical but the
ability to assign a failure cause to each system failure is
[critical]. Correctly determining failure cause is very difficult.
particularly when dealing with complex systems. Therefore, it is
conceivable that the design changes do not improve system
reliability. In fact, these changes may even degrade reliability.
To apply failure discounting procedures described below, one must be
able to assign failure causes to every system failure... [ref. 5:
pp. 3-4].

In this model the number of failures used in equation (3.1) is

adjusted by removing a fixed fraction of a failure each time a

predetermined amount of test time has past without reoccurrence of the

failure cause. To employ the standard or straight percent discounting

method one must specify two parameters. These are the fraction of a

failure to be removed, f, and the discount interval, Treq. The adjusted

number of failures due to a single cause is calculated as

Fadi = F e (1 -f) INT(Tsf /Treq) (3.10),

where Tsf = Time Since Last Failure for the cause and where INT(x) is a

function that returns the integer-part of x by truncating any fractional

part. When a failure due to the same cause reoccurs, Tsf is reset to 0,

and any previously removed fractions are restored.

10



A new number of failures for each phase is calculated as the sum of

the adjusted failures for each cause in that phase. These adjusted

numbers of failures are used in equation (3.1) and the results used in

equations (3.3) and (3.4) as described above.

An example of the application of the standard method of failure

discounting will clarify this process. Consider the data in Table I.

This fictitious data is intended solely to illustrate this discounting

Table I: STANDARD METHOD OF FAILURE DISCOUNTING

PHASE TIME ACTUAL FAILURES CAUSE ADJUSTED FAILURES

1 2 1 X 1.00
2 3 2 Y 0.50 + 1.00 = 1.50
3 7 3 X 2.00 + 0.25 = 2.25

f = 0.5, Treq = 3

method. Assume that improvements are made after each failure. Thus Table

I represents three phases of a test-fix-test scenario with two possible

causes of failure, X and Y. In this example Treq = 3 mission units and

f = .5

The second failure, attributed to cause Y, terminates phase two. At

that time the failure due to cause X has had 3 mission units without a

reoccurrence of that cause so the failure discounting formula is applied:

Fadj - F(1 -f)JNT(Tf/Treq) - 1(1 -0.5) INT(3/3) = 0.50

Thus at the end of phase two the failure that ended phase one is counted

as one-half of a failure. Phase three ends with a reoccurrence of failure

cause X. The value for Tsf is reset to 0 resulting in the restoring of

11



all failures due to cause X to full value. However there have been 7

mission units since a failure due to cause Y. Therefore the discounting

formula is applied:

Fadj = F( 1-f)INT(Tsf/Tre
q) = 1 (1-0.5 )INT(/3) = (0.50)2 = 0.25

12



IV. SIMULATION METHODOLOGY

Monte Carlo simulation methods are used to analyze the models

discussed in this thesis. The simulation is written for a micro-computer

in the programming language Fortran (see appendix B for listing). A

Monte-Carlo Simulation was used for several reasons. First, the data can

be generated from a known distribution; in this case exponential failure

times. Second, the parameters, i.e. failure rate, can be controlled.

Third, the results are reproducible if the same seed is used. This allows

the parameters for the failure discounting method and regression weights

to be altered and compared using the same data. Finally the data is very

easy and inexpensive to generate, allowing many repetitions of the same

experiment. This allows statistics such as the average and mean square

error (MSE) to be calculated very easily.

A. PROGRAM

In the simulation, the exponential failure times were calculated

stochastically using a transform on the output of a uniform pseudo-random

number generator. Times for each cause were generated and then the

minimum time was selected as the next failure and its cause was recorded

as the cause of the failure. This is similar to the "fixed phase

reliability option" used by Chandler [ref. 5]. Rather than generating a

failure time for each item on test, the time until the first of n items

fails was generated. This time is the minimum of n exponential random

13



variables with failure rate X. The program keeps track of total test time

in each phase, the total time since the last failure for each cause, and

the adjusted as well as actual number of failures for each cause in each

phase. These values are utilized to estimate the failure rate for each

phase using the four models discussed in the previous chapters, the

cumulative AMSAA, Modified AMSAA, Modified AMSAA with regression weights,

and Modified AMSAA with failure discounting. The program calculates the

average and MSE for the estimate of each model over a number of

replications. Five hundred replications were used for all cases simulated

in this thesis. Appendix II gives a more detailed description of the

program and its use.

B. FAILURE RATE PATTERNS

Eight patterns of reliability growth and non-growth are simulated to

evaluate the four models over a range of possible cases. The Eight

failure rate patterns simulated are taken from the eight reliability

patterns used by Chandler [ref. 5: pp. 19-30]. These reliabilities are

converted into failure rates assuming a one hour nominal mission time.

This assumption leads to the relationship R = e"  or X = -lnR. In this

way, Chandler's matrices of Reliability were converted to matrices of

Failure rates in failures per hour. These eight matrices were used as

inputs to the simulation and are shown in Tables II through IX.

The failure rate patterns are depicted in Figures 1 through 8. In all

of the following descriptions, reliability growth is analogous to a

decrease in the failure rate. Figure I depicts a pattern of non-concave

14



reliability growth which may not be unusual in situations where the exact

method or technology required to correct a failure causing defect is not

immediately available, but, as the systems evolves and the personnel

become more familiar with it, the failure correction process proceeds more

efficiently. This pattern is convex in the reliability function, e-

Figure 2 represents a pattern of increasing, then decreasing, then

finally increasing reliability. This type of pattern can result from

experimental systems where the results of design changes may introduce new

modes of failure when they are implemented.

Figure 3 represents a pattern of growth which stagnates for a few

phases before finally achieving mature reliability.

Figures 4 and 5 depict conventional reliability growth patterns one

would expect to encounter when evaluating the majority of systems.

Pattern 4 ultimately attains a higher reliability (lower failure rate)

than pattern 5.

Figures 6,7, and 8 represent constant system reliabilities that are

moderately high medium and low respectively.

These eight patterns were simulated over 500 replications for each of

the four models, each of the four discounting parameters and each of the

four weighting schemes.

15
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Figure 1: Pattern 1, Reliability Convexly Increasing

Table II: PATTERN 1 USER INPUTS

Phase Failure Rate
Cause 1 2 3 4 5 6 7 8 9 10
1 .1625 .150b .1054 .0943 .0726 .0513 .0305 .0101 .0101 .0020
2 .1744 .1625 .1'93 .1054 .0834 .0513 .0305 .0101 .0101 .0020
3 .1863 .1744 .1508 .1278 .1054 .0726 .0408 .0202 .0101 .0020
4 .1863 .1744 .1625 .1393 .1165 .0834 .0619 .0253 .0101 .0020
5 .2107 .1863 .1744 .1508 .1165 .0943 .0619 .0398 .0101 .0020
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Figure 2: Reliability Increasing - Decreasing - Increasing

Table III: PATTERN 2 USER INPUTS

Phase Failure Rate
Cause 1 2 3 4 5 6 7 8 9 10
1 .0202 .0202 .0101 .0101 .0101 .0101 .0101 .0101 .0101 .0101
2 .0513 .0305 .0202 .0202 .2485 .0726 .0202 .0101 .0101 .0101
3 .1985 .0726 .0408 .3285 .1054 .0513 .0305 .0202 .0202 .0202
4 .2231 .0834 .0408 .0408 .0408 .0408 .0408 .0305 .0202 .0202
5 .4155 .1625 .1054 .1054 .1054 .1054 .0619 .0408 .0408 .0408
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Figure 3: Pattern 3, Reliability Increasing - Constant - Increasing

Table IV: PATTERN 3 USER INPUTS

Phase Failure Rate

Cause 1 2 3 4 5 6 7 8 9 10
1 .1508 .0726 .0305 .0305 .0202 .0202 .0202 .0101 .0101 .0101
2 .1508 .0726 .0305 .0305 .0202 .0202 .0202 .0101 .0101 .0101
3 .1508 .0726 .0305 .0305 .0202 .0202 .0202 .0101 .0101 .0101
4 .1508 .0726 .0305 .0305 .0202 .0202 .0202 .0101 .0101 .0101
5 .3011 .2231 .1054 .1054 .1393 .1393 .0726 .0619 .0619 .0619
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Figure 4: Pattern 4, Rapid Increase to High Reliability

Table V: PATTERN 4 USER INPUTS

Phase Failure Rate
Cause 1 2 3 4 5 6 7 8 9 10
1 .0202 .0101 .0101 .0050 .0020 .0020 .0020 .0020 .0020 .0020
2 .0513 .0202 .0101 .0050 .0020 .0020 .0020 .0620 .0020 .0020
3 .1985 .0408 .0101 .0050 .0020 .0020 .0020 .0020 .0020 .0020
4 .2231 .0408 .0101 .0050 .0020 .0020 .0020 .0020 .0020 .0020
5 .4155 .1054 .0101 .0050 .0020 .0020 .0020 .0020 .0020 .0020
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Figure 5: Rapid Increase to Moderately High Reliability

Table VI: PATTERN 5 USER INPUTS

Phase Failure Rate
Cause 1 2 3 4 5 6 7 8 9 10
1 .0202 '0101 .0101 .0101 .0101 .0101 .0101 .0101 .0101 .0101
2 .0513 .0202 .0101 .0101 .0101 .0101 .0101 .0101 .0101 .0101
3 .1985 .0408 .0202 .0202 .0202 .0202 .0202 .0202 .0202 .0202
4 .2231 .0408 .0305 .0253 .0253 .0253 .0253 .0253 .0253 .0253
5 .4155 .1054 .0408 .0398 .0398 .0398 .0398 .0398 .0398 .0398
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Figure 6: Pattern 6, Constant Moderately High Reliability

Table VII: PATTERN 6 USER INPUTS

Phase Failure Rate
Cause 1 2 3 4 5 6 7 8 9 10

1 .0101 .0202 .0202 .0253 .0305 .0305 .0253 .0202 .0202 .0101
2 .0202 .0202 .0253 .0305 .0101 .0101 .0305 .0253 .0202 .0202
3 .0202 .0253 .0305 .0101 .0202. .0202 .0101 .0305 .0253 .0202
4 .0253 .0305 .0101 .0202 .0202 .0202 .0202 .0101 .0305 .0253
5 .0305 .0101 .0202 .0202 .0253 .0253 .0202 .0202 .0101 .0305
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Figure 7: Pattern 7, Constant Moderate Reliability

Table VIII: PATTERN 7 USER INPUTS

Phase Failure Rate
Cause 1 2 3 4 5 6 7 8 9 10

1 .0101 .2485 .1054 .0408 .1054 .1054 .0408 .1054 .2485 .0101
2 .2485 .1054 .0408 .1054 .0101 .0101 .1054 .0408 .1054 .2485
3 .1054 .0408 .1054 .0101 .2485 .2485 .0101 .1054 .0408 .1054
4 .0408 .1054 .0101 .2485 .1054 .1054 .2485 .0101 .1054 .0408
5 .1054 .0101 .2485 .1054 .0408 .0408 .1054 .2485 .0101 .1054

22



matt-e 8

06

3 6

04

U-

0 2

2 3 4 6 8

Pnase

Figure 8: Pattern 8, Constant Low Reliability

Table IX: PATTERN 8 USER INPUTS

Phase Failure Rate
Cause 1 2 3 4 5 6 7 8 9 10

1 .0202 .0513 .1985 .2231 .4155 .4155 .2231 .1985 .0513 .0202
2 .0513 .1985 .2231 .4155 .0202 .0202 .4155 .2231 .1985 .0513
3 .1985 .2231 .4155 .0202 .0513 .0513 .0202 .4155 .2231 .1985
4 .2231 .4155 .0202 .0513 .1985 .1985 .0513 .0202 .4155 .2231
5 .4155 .0202 .0513 .1985 .2231 .2231 .1985 .0513 .0202 .4155
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V. INTERPRETATION OF RESULTS

This chapter describes the results of the simulation runs for the

eight failure patterns. Four runs, designated E, F, G and H, were

conducted for each pattern and each model. The parameters used in failure

discounting and the weighting scheme used were varied over these four

runs. The performance of the four models for these runs are reduced to

two graphs, for each pattern and each run, to allow comparison. The first

graph plots the average of the estimates of XTTk over the 500 replications

and the true failure rate against the phase. The second graph plots the

Mean square error (MSE) for the estimates against the phase. The MSE is

used to compare the performance of the models relative to each other. The

MSE is calculated for each model and each phase by
A

MSE = (XUTTk-)k) 2/500 (5.1)

where the summation is over the 500 replications. Due to space

constraints, the graphical results of only a few of the more

representative runs are included in this chapter. The graphs for all runs

conducted are included in Appendix C.

This interpretation is organized according to the reliability growth

patterns introduced in the previous chapter. These patterns will be

referred to by their numerical designator. The numerals are listed on the

figures in the preceding chapter and are summarized below:

" Pattern I - Convexly increasing reliability

" Pattern 2 - Reliability increasing rapidly, then decreasing then
increasing again
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" Pattern 3 - Reliability increasing rapidly, then constant, then

increasing again

" Pattern 4 - Rapidly increasing to high reliability

" Pattern 5 - Rapidly increasing to moderately high reliability

" Pattern 6 - Constant moderately high reliability

" Pattern 7 - Constant moderate reliability

" Pattern 8 - Constant low reliability

Recall that in all of the following graphs the standard AMSAA model

was not discounted nor weighted. Each of these Patterns was evaluated for

four sets of regression weights and four sets of discounting parameters

as summarized in Tables X and XI respectively.

Table X: REGRESSION WEIGHTS USED

Run 1 2 3 4 5 6 7 8 9 10
E .050 .224 .368 .473 .549 .607 .652 .688 .717 .741
F .250 .500 .620 .707 .758 .794 .820 .841 .857 .871
G .500 .707 .794 .841 .871 .891 .905 .917 .925 .933
H .100 .100 .110 .120 .130 .140 .150 .700 .800 .900

Notes:

1. E, F, and G used weighting method 1, w1 = fl/i, f =w1
2. H use4 weighting method 2, user selected weights.
3. All w, above are divided by the sum of weights when used in the
regression equations to ensure that weights always sum to one.

Table XI: DISCOUNTING PARAMETERS USED

Time Required
Run Fraction Between Discounting
E .50 3
F .50 15
G .25 3
H .25 15
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A. RAPIDLY INCREASING RELIABILITIES: PATTERNS 4 AND 5

Figure 9 shows the average estimates of the four models applied to

Avg Est Fai Lure Pate
Pattern 5 E -- CUM AMSAA

0 MOD AMSAA

X MOD w/ WTS

- MOD w/ DSCT

- TPUE PATE
15

U
'2

$ 0 9

36

3 3 5 5 7 0 9 '0
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Figure 9: Pattern 5 E

pattern 5. Patterns of this type are considered typical reliability

growth patterns. All four models follow this pattern well. The Modified

AMSAA model is closest to the true failure rate in the earlier phases, and

the Cumulative AMSAA model gives a slightly closer estimate in the last

three phases.
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Figure 10: Pattern 5 E HSE (Logarithmic scale on vertical axis)

Figure 10 depicts the MSE of the estimates in Figure 9 (notice the

logarithmic vertical scale.) The Modified AMSAA model has the lowest MSE

in the early phases, and the Cumulative AIISAA has lower MSE in the last

three phases. It is interesting to note how the Modified AMSAA model with

failure discounting has the highest MSE in the later phases. Due to the

aggressive discounting done on this run, the estimates become too

optimistic and the failure rate is underestimated.

27



B. CONVEXLY INCREASING RELIABILITY: PATTERN 1

Figure 11 indicates the performance of the models on a nonstandard

pattern of reliability growth. The Cumulative AMSAA model does not follow

this pattern. The Modified AMSAA models perform the best on this type of

pattern.

Pattern 1 E -W CUM AMSAA

o MCD AYSAA

25 X MX E; W'

*MOD w/ DSC T
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Figure 11: Pattern 1 E
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As Figure 12 indicates, the Modified AMSAA with failure discounting

has the lowest MSE in the last four phases. However this model appears

Mean Square Error
Pattern 1 E -U-- CUM AMSAA

o MOD AMSAA

ioo- X MOD w/ WTS

, MOD w/ DSCT

x

8 -

0 '

Ux
--E-

0
x

'E-

'6-5

Figure 12: Pattern 1 E MSE (Logarithmic vertical scale)

to be biased toward the optimistic side. Figure 11 shows its tendency to

underestimate the failure rate.
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C. COMBINED RELIABILITY GROWTH AND NONGROWTH: PATTERNS 2 AND 3

Figure 13 shows the average performance of these models on Pattern 2.

The Modified AMSAA model with regression weights appears to be most

responsive to these direction changes. However, Figure 14 indicates that

Avg Est Fai Lure nate
Pattern 2 E --- CUM AMSAA

o MOD AMSAA

X MOD w/ WTS
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Figure 13: Pattern 2 E

the MSE of this weighted model is not smallest. This is due to the

increased variability of this model. Figure 14 also shows that the

discounted model has the lowest MSE in the last four phases, although it

consistently underestimates the failure rate.
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The unembellished Modified AMSAA model performs well in both average

and MSE at all phases of this pattern. Though the Modified AMSAA model

has a slightly higher MSE in the last stages, it is better suited to

Mean SquareO Error
Pattern 2 E -I- CUM AMSAA

o MOD AMSAA

X MOD w/ WTS

0 MOD w/ DSCT

0 1

E -U-

S 2 3 9
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Figure 14: Pattern 2 E MSE (Logarithmic Vertical scale)
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models of this sort because it is not as optimistic as the discounted

version.

D. PATTERNS OF CONSTANT RELIABILITY: PATTERNS 6, 7 AND 8

Figure 15 depicts the average of the estimates when applied to

Pattern 7. After the first two phases, the Modified AMSAA model follows

the constant reliability pattern well. Figure 16 also shows that this

model has the lowest MSE for constant failure rates.
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Figure 15: Pattern 7 E
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The preceding examples are representative of the results for all

other patterns and runs. The graphical results of all simulation runs

conducted with these models can be found in Appendix C.

The Modified AMSAA model without discounting or weighting showed the

best overall performance on all patterns simulated. There may be certain

Mear Square Error
7tterr 7 E - CLV AVSAA
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Figure 16: Pattern 7 E NSE (Logarithmic vertical scale)
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reliability patterns where, given the correct parameters, the discounted

or weighted versions of this model will yield a lower MSE. The reality

is that, in practice, the actual failure rate is never known with

certainty. This fact, coupled with the difficulty in selecting 'good'

weighting parameters and computational simplicity, appear to make the

Modified AMSAA model a very good choice for all applications.
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VI. SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

A. SUMMARY

The purpose of this papcr was to evaluate the Modified AMSAA model to

discover if failure discounting or regression weighting factors can

improve this model. Discounting failures occurring early in a testing

program should allow the early data to be used to evaluate current

estimates of failure rate. If this discounting is warranted and is

applied correctly, more accurate estimates of failure rate and ultimately

reliability should result. Similarly the application of weighting factors

was intended to improve the accuracy of the model by forcing more weight

on the current phase data in the regression.

Toward this end, two methods of weighting the data were derived and

evaluated. The first method allows the user to select the first phase

weight and the model computes each subsequent phases weight. The other

method allows the user to select the weight explicitly for each phase.

Normalized weights are used in the regression equations.

The discounting method removed a certain fraction of each failure

attributed to a given cause each time the required amount of test time was

accumulated without that cause reoccurring. If another failure occurred

due to that cause, the time since failure was reset to zero and all

failures due to that cause were restored to full value. This method of

discounting requires the selection of two parameters. These are the
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fraction to be removed, f, and the time required before removal, Treq.

B. CONCLUSIONS

The Modified AMSAA model was discovered to be superior to the AMSAA

model regardless of the underlying pattern of reliability. The

application of regression weighting factors or failure discounting did not

significantly improve the accuracy of this model. With most patterns

simulated these embellishments actually detracted from the accuracy of the

Modified AMSAA model. The discounted model had a tendency to

underestimate the failure rate. This is an indication that the

discounting is unwarranted and probably not needed for this model.

The reason for this result could be that the Modified AMSAA model

uses regression methods to estimate the failure rate from the data from

each phase. This data is kept segregated by phase throughout. There may

be no need to discount early failures if this early data is already

handled differently than current data by the model.

The weighting methods evaluated failed to improve the Modified AMSAA

model. There may be a method which optimally weights the failure data

from the previous and current phases which can improve this model. The

weighting methods applied in this study were not exhaustive. More

analysis should be done to find better methods of weighting this model.

The Modified AMSAA model is very easy to apply to virtually any test

plan. The calculations required could be done on most hand-held

programmable calculators. The subroutine located in Appendix B, could be

used by anyone using this model on a computer that will support Fortran.
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C. RECOMMENDATIONS FOR FURTHER STUDY

The following is a list of areas which suggest further study.

* Some method optimally weighting the data should be sought so that
the regression generated estimates have the lowest variance. A
study of many possible weighting methods should be conducted.
Ultimately a method of calculating the weights entirely from the
data would be best.

" A sensitivity study should be conducted on the choice of failure
discounting parameters in hopes of finding a way to optimally
discount failures. Possibly a method where these parameters are
calculated dynamically from the data could be found.

" Some exploration of other methods for improving the Modified AMSAA
model should be studied. These would include applying jack-knifing
to the regression model.
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APPENDIX A

A. DERIVATION ESTIMATE OF SINGLE PHASE FAILURE RATE ESTIMATE

The Modified AMSAA model assumes an exponential failure distribution

with the failure rate constant within each phase of development. The

failure rate changes after the system configuration is changed, marking

the transition to a new phase. Let Xi denote the failure rate in phase i.

In the test plan simulated in this thesis, testing is conducted on n items

in each phase until a set number of failures, F, have been observed.

After the testing is completed, failures are attributed to specific causes

and changes are made in the design attempting to eliminate these causes.

The regression equations of the Modified AMSAA model require an

estimate of single phase failure rate, Xi. This estimate is used in the

regression equations to estimate the parameters a and b in the model of

the instantaneous failure rate,

A AA

XTTj ' (1_a)b(TTj)-a [ref. 1: p. 3-1].

In this thesis the test plan simulated tested in each phase until a

predetermined number of failures had occurred. The maximum likelihood

estimate for Xj,

A Fj A F.
xi " , has expected value E[-j Fj -1 Xj, if Fj > 1.

To calculate this expected value note that 2XjTj has a Chi-square

distribution with parameter 2FJ. If X = 2XT is Chi-square(2F), then
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E[1/X] = 1/[2(F-1)]. Using this estimate in the model produced biased

results. The estimated instantaneous failure rate sj was consistently

high.

The next estimate tried was the bias corrected maximum likelihood

estimate,

A Fj-l F. A

J Fj Tj , which has expected value E[3j] ="j.

Using this estimate the model also produced biased results. The estimated

instantaneous failure rate XTTj was consistently low. Runs A through 0

used this estimate. The results are not included in this thesis because

they were unsatisfactory.

These results prompted the search for a nearly unbiased estimate of

single phase failure rate that would give unbiased results in the model.

The nearly unbiased estimate chosen was

A 2Fj-1 Fj 2Fj-l
j= Fj Tj which has expected value E[]= 2Fj-2 XJ?

if Fj > 2. This estimate produced the results shown in this thesis for

runs E through G. The variance of this estimate can be shown to be

A (2F3-1)
2

Var[3 ] . 4(Fj-1)2(F-2) j'2, if Fj >2.

The calculation of this variance also uses the Chi-square distribution of

2XjTj. If X - 2XT is Chi-square{2F) then E[I/X] = 1/[4(F-1)(F-2)], and

Var(/X 2 ] = E[1/X 2 ] - (E[1/X]) 2 = 1/[4(F-l) 2(F-2)].
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B. DERIVATION OF THE MODIFIED AMSAA MODEL

The Modified AMSAA model uses exponential regression to estimate the

parameters a and b which relate the amount of accumulated test time, TT

to the failure rate. The model is

XTTj = (1-a)b(TTj) -a  [ref. 1: p. 3-1].

This relationship is transformed in order to use the least squares linear

regression equations to estimate a and b. If the natural log is taken of

both sides of this equation, the result is

ln(ATTj) = ln((1-a)b) + (-a)ln(TT,) = a + O(ln(TTj)), if we let

= ln((1-a)b) and fi = -a. Thus the data pairs become (ln(Xj),ln(TTj)).

Applying the standard regression equations the estimates for a and b

become

J -3
A 7, XiY1 Yj 2- X1

A i i 2

i=l i=l
A I~v - A

bi : ^ exp(Y,+ ajXj)
-ai

Awhere Y, = n n( X) and X = n(TTi),Y j = (Y,+Y2+...+Y,)/j and Xj =

(Xi +X2 +...+Xj)/j.
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APPENDIX B

The computer program written for this thesis is written in modular

form. The program is written in six sections: the main program, the

uniform pseudo-random number generator, and the four subroutines, one for

each reliability growth model. The main program reads the data file,

CRG.DAT, and uses the parameters contained in it to control the

simulation. The simulation consists of three distinct steps. These are

generation of the random variables, processing these random variables into

the failure data needed by the subroutines, and finally use of the data

by the four subroutines to estimate failure rates. The program also

collects data on the estimates generated in order to generate statistics.

These statistics, the average and mean square error are used evaluate

performance of the models with respect to the "known" reliability growth

pattern used to generate the data.

The subroutines could be used for any program that read the

appropriate data and used to track reliability growth for an actual

system that the user was interested in. It could also be used to evaluate

any continuous reliability growth model provided the user programs a

subroutine in such a way that it interfaces with the main program.

The names of the variables and arrays used in the main program and

subroutines have been used so that they are similar to those parameters

and variables in the models presented in the body of this thesis.
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The remainder of this appendix is an explanation of variables and

arrays used in the main program, a listing of the source code for the

program and subroutines, and sample input and output files.

A. ARRAY AND VARIABLE LIST

Name Description

NCAUSE The number of failure causes in the simulation

NPHASE The number of phases to be simulated

NREPS The number of replications to simulate over

NITEMS( ) The number of items on test in each phase, indexed by phase

R( ) The number of failures per phase, indexed by phase

FCAUSE( , ) The cause of a given failure, indexed by phase and failure

CAUSE Index for failure causes

PHASE Index for phases of development

J Index for failures within a phase

F( ) The number of failures for a gi,%- n cause in each phase,
indexed by phase and cause

FAIL Counter of total number of failures over all phases and
causes, used to index FTT( ), for the Cumulative AMSAA model

FTT( ) Total test time accumulated by all items after each failure,
indexed by failure

WTP Weighting type pointer - Data file parameter to select
weighting method (1 or 2)

T( ) Exponential failure time for the first failure of n items for
a given cause in each phase, indexed by phase, cause, and
failure

TT( , ) The time on test for all items until the next failure occurs
for any cause, indexed by phase and failure
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PTT( ) Total test time accumulated by all items for each phase,
indexed by phase

TSF( , ) Test time accumulated since last failure for a given cause
at the end of each phase, indexed by phase and cause

LAM( , ) The failure rate (lambda) for a given cause in each phase,
indexed by phase and cause

TRLAM( ) True lambda - the sum over all causes of LAM( , ) for each
phase, indexed by phase

LAMBRI( ) The average of the Modified AMSAA model (MODEL 1) estimate
of lambda for each phase, indexed by phase

LAMBR2( ) The average over all replications of the Weighted Modified
AMSAA model (MODEL 2) estimate of lambda for each phase,
indexed by phase

LAMBR3( ) The average over all replications of the Discounted Modified
AMSAA model (MODEL 3) estimate of lambda for each phase,
indexed by phase

LAMBR4( ) The average over all replications of the Cumulative AMSAA
model (MODEL 4) estimate of lambda for each phase, indexed
by phase

MSEI( ) The mean square error over all replications of the Modified
AMSAA model (MODEL 1) estimate of lambda for each phase,
indexed by phase

MSE2( ) The mean square error over all replications of the Weighted
Modified AMSAA model (MODEL 2) estimate of lambda for each
phase, indexed by phase

MSE3( ) The mean square error over all replications of the Discounted
Modified AMSAA model (MODEL 3) estimate of lambda for each
phase, indexed by phase

MSE4( ) The mean square error over all replications of the Cumulative
AMSAA model (MODEL 1) estimate of lambda for each phase,
indexed by phase

FADJ( ) The adjusted number of failures for a given cause at the end
of each phase, indexed by phase and cause

SEED The seed for the random number generator function RAND(SEED)
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B. LISTING OF COMPUTER PROGRAM SOURCE CODE: CRG.FOR

* Fortran program to Simulate Continuous failure data from *
* failure rates for specific causes. The data is used to test *
* four Reliability Growth Models and evaluate results by *

* comparing Mean Square Error. *
* This program will handle up to 15 phases, 10 failure causes, *
* and 10 failures per phase. If needed the dimensions on the *
* arrays could be changed to accommodate more. *

* PROGRAMMED BY *
* LT S.L.NEGUS USN *

INTEGER NCAUSE,NPHASE,NREPS,NITEMS(15),R(15),FCAUSE(15,10),
@ CAUSE,PHASE,F(15,10),FAIL,WTP
DOUBLE PRECISION T(15,1O,10),TT(15,1O),PTT(15),TSF(O:15,1O)
@ ,LAM(15,10),LAMBRI(15),LAMBR2(15),LAMBR3(15),LAMBR4(15)
@ ,MSE1(15),MSE2(15),MSE3(15),MSE4(15),FADJ(15,15),SEED
@ ,FTT(O:150),TRLAM(15)

OPEN (UNIT=l,FILE='CRG.DAT')
OPEN (UNIT=9,FILE='MSES.OUT')
OPEN (UNIT=5,FILE='AVGS.OUT')

* TAKE DATA FROM DATA FILE AND INITIALIZE VARIABLES

* READ IN # CAUSES, # PHASES, # REPLICATIONS, SEED & WEIGHTING * TYPE
POINTER FROM DATA FILE

READ(I,*) NCAUSENPHASE,NREPS,SEED,WTP

* READ IN FAILURE DISCOUNTING FRACTION AND TIME INTERVAL
READ(I,*) FRAC,TREQ

* READ IN FAILURE RATE FOR EACH PHASE AND CAUSE
READ(I,*) ((LAM(PHASE,CAUSE),PHASE-1,NPHASE),CAUSE=1,NCAUSE)

* READ IN # ITEMS & # FAILURES PER PHASE FROM DATA FILE
DO 1 PHASE = I,NPHASE

READ (1,*) NITEMS(PHASE),R(PHASE)
DO 2 CAUSE - I.NCAUSE

TRLAM(PHASE) - TRLAM(PHASE)+LAM(PHASE,CAUSE)
2 CONTINUE
I CONTINUE
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MAIN DO LOOP TO CARRY OUT PROCEDURE NREPS TIMES

DO 100 I=1,NREPS
FAIL = 0
FTT(O) - 0.

* SIMULATE THE TIME TO FAILURE FOR THE JTH FAILURE IN EACH PHASE
* AND FOR EACH CAUSE

DO 10 PHASE = 1, NPHASE
DO 15 CAUSE - 1, NCAUSE

TSF(PHASE,CAUSE)-O.O
DO 17 J=1,R(PHASE)

T(PHASE,CAUSE,J)=(-I./((NITEMS(PHASE)-J+I)*
@ LAM(PHASE,CAUSE)))*ALOG(RAND(SEED))

17 CONTINUE
15 CONTINUE

10 CONTINUE

* SORT THE TIMES FOR EACH CAUSE IN EACH PHASE & FAILURE TO
* DETERMINE WHICH CAUSE FAILED FIRST AND WHEN THAT HAPPENED

DO 20 PHASE = I,NPHASE
PTT(PHASE)=O.O
DO 25 J = 1,R(PHASE)

FCAUSE(PHASE,J) . 0
TT(PHASE,J) = 1.0E25
DO 30 CAUSE - I,NCAUSE

IF (T(PHASE,CAUSE,J) .LT. TT(PHASE,J)) THEN
TT(PHASE,J) = T(PHASE,CAUSE,J)
FCAUSE(PHASE,J) - CAUSE

ENDIF
30 CONTINUE

* CALCULATE THE TIME SINCE LAST FAILURE FOR EACH CAUSE IN PHASE

DO 40 CAUSE - 1,NCAUSE
IF (CAUSE .EQ. FCAUSE(PHASE,J)) THEN

TSF(PHASE,CAUSE) - 0.0
ELSEIF (J .EQ. 1) THEN

TSF(PHASE,CAUSE) - TSF(PHASE-1,CAUSE)+
ELSE TT(PHASE,J)*(NITEMS(PHASE)-J+l)

TSF(PHASE,CAUSE) - TSF(PHASE,CAUSE)+
@ TT(PHASE,J)*(NITEMS(PHASE)-J+I)ENDIF

40 CONTINUE

* COMPUTE TOTAL TIME ON TEST FOR EACH PHASE, PTT(PHASE)
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* AND FOR EACH FAILURE, FTT(FAIL)

PTT(PHASE)=PTT(PHASE)+TT(PHASE,J)*(NITEMS(PHASE)-J+l)
FAIL = FAIL + 1
FTT(FAIL)=FTT(FAIL-1)+TT(PHASE,J)*(NITEMS(PHASE) -J+1)

25 CONTINUE

* ADJUST FAILURES FOR FAILURE DISCOUNTING

DO 75 K=1,PHASE
FADJ(PHASE,K) = 0

75 CONTINUE
DO 50 CAUSE - 1,NCAUSE

F(PHASE,CAUSE)=O
DO 60 J-1,R(PHASE)

IF (CAUSE .EQ. FCAUSE(PHASE,J)) THEN
F(PHASE,CAUSE) = F(PHASE,CAUSE) + 1

ENDIF
60 CONTINUE

DO 70 K=1,PHASE
FADJ (PHASE ,K) =FADJ (PHASE, K) +F(K, CAUSE )

@ *(I.- FRAC)**AINT(TSF(PHASE,CAUSE)/TREQ)
70 CONTINUE
50 CONTINUE
20 CONTINUE

* GO TO SUBROUTINES FOR MODIFIED AMSAA MODELS

CALL MODLI(I,PTT,R,NPHASE,LAMBRI,MSE1,TRLAM)
CALL MODL2(WTP,I,PTT,R,NPHASE,LAMBR2,MSE2,TRLAM)
CALL MODL3(I,PTT,FADJ,NPHASE,LAMBR3,MSE3,TRLAM)
CALL MODL4(1I,FTT,R,NPHASE,LAMBR4,MSE4,TRLAM,FAIL)

100 CONTINUE

*FORMAT AND WRITE OUTPUT TO FILE
WRITE (5,140) NREPS
WRITE (9,145) NREPS
DO 120 PHASE-I,NPHASE

LAMBRI (PHASE)-LAMBR1 (PHASE)/NREPS
MSE1 (PHASE)-MSE1 (PHASE)/NREPS
LAIIBR2 (PHASE)-LAMBR2 (PHASE)/NREPS
MSE2 (PHASE)=MSE2(PHASE)/NREPS
LAMBR3 (PHASE) -LAJ4BR3 (PHASE )/NREPS
MSE3 (PHASE)-MSE3 (PHASE)/NREPS
LAMBR4( PHASE) =LAMBR4 (PHASE)/NREPS
MSE4(PHASE) =MSE4 (PI]ASE)/NREPS

WRITE (5,150) TRLAM(PHASE),LAMBR1(PHASE),LAMBR2(PHASE)
@,LAMBR3(PHASE) ,LAMBR4(PHASE)
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WRITE (9,150) MSE1(PHASE),MSE2(PHASE),MSE3(PHASE)

,MSE4(PHASE)

120 CONTINUE

140 FORMAT ('AVERAGE OF ESTIMATES FOR',16,' REPS'/
@ TRUE LAMBDA MODEL 1 EST MODEL 2 EST MODEL 3 EST',
@ 'MODEL 4 EST')

145 FORMAT ('MEAN SQUARE ERRORS FOR',16,' REPS'/
@ ' MODEL I MSE MODEL 2 MSE MODEL 3 MSE MODEL 4 MSE')

150 FORMAT (6F13.8)

STOP
END

* RANDOM NUMBER GENERATOR

FUNCTION RAND(SEED)

DOUBLE PRECISION M,A,X,SEED
M=2.**31-1.
A=7.**5
X=1. + MOD(A*SEED,M)
RAND=X/M
SEED=X
RETURN
END
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* SUBROUTINE #1 *

* FORTRAN MODEL FOR RELIABILITY IN CONTINUOUS PROCESS *
* PROGRAMMED BY :*
* LT S.L.NEGUS USN *

* THIS MODEL IS BASED ON THE MODIFIED AMSAA MODEL. *
* USING LEAST SQUARES REGRESSION. *
* THE CONTINUOUS FAILURE RATE IS ESTIMATED. *
* NO DISCOUNTING OR REGRESSION WEIGHTS ARE USED. *

* SUBROUTINE PROGRAM TO ESTIMATE LAMBDA USING MODIFIED AMSAA MODEL

SUBROUTINE MODL1(I,T,F,NPHASE,LAMBAR,MSELAM)

INTEGER F(15)
DOUBLE PRECISION T(15),TT,X,Y,SUMXY,SUMY,XBAR,
@ YBAR,SUMX,SUMX2,AHAT,BHAT,LAMHAT
@ ,LAMBAR(15),MSE(15),LAM(15)

* MAIN DO LOOP *

* ITERATIONS ON DEVELOPMENT PHASE, K *

TT=O.
SUMXY=O.
SUMY=O.
SUMX=O.
SUMX2=O.

DO 200 K-I,NPHASE
IF (F(K) .LE. 1) THEN

Y = ALOG(.5/T(K))
ELSE

Y = ALOG((2.0*F(K)-I.O)/(2.0*T(K)))
ENDIF
TT=TT+T(K)
X=ALOG(TT)
SUMXY=SUMXY+X*Y
SUMY=SUMY+Y
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SUMX-SUMX+X
SUMX2-SUMX2+X*X
XBAR-SUMX/K
YBAR-SUMY/K

IF (K .GT. 1) THEN
AHAT= (SUMXY-YBAR*SUMX)/(XBAR*SUMX

@ -SUMX2)
BHAT=(1 ./(1. AHAT))*EXP(YBAR+AHAT*XBAR)
LANHATE (1-AHAT )*BHAT*TT** (-AHAT)

ELSEIF (F(K) .GT. 1) THEN
LAMHAT-(2.O*F(K)-1 .O)I(2.O*T(K))

ELSE
LAMHAT-.5/T(K)

ENDIF

LAMBAR(K) =LAMBAR(K)+LAMHAT
MSE(K) = MSE(K) + (LAtHAT-LAM(K))**2

200 CONTINUE

210 FORMAT(3F6.1)
220 FORMAT(I3,5Fl0.4)
230 FORMAT(A3,5A10)

END
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* SUBROUTINE #2 *

* FORTRAN MODEL FOR RELIABILITY IN CONTINUOUS PROCESS *
* PROGRAMMED BY :*
* LT S.L.NEGUS USN *

* THIS MODEL IS BASED ON THE MODIFIED AMSAA MODEL *
* USING WEIGHTED LEAST SQUARES REGRESSION. *
* THE CONTINUOUS FAILURE RATE IS ESTIMATED. *
* REGRESSION WEIGHTS ARE USED. *

* SUBROUTINE PROGRAM TO ESTIMATE LAMBDA USING MODIFIED AMSAA MODEL

SUBROUTINE MODL2(WTPI,T,F,NPHASE,LAMBAR,MSE,LAM)

INTEGER F(15),N(15),WTP
DOUBLE PRECISION T(15),TT(O:15),X(15),Y(15),SUMXY(15)
@ ,SUMY(O:15),XBAR(I5),YBAR(15),SUMX(O:15),SUMX2(15),AHAT(15)
@ ,BHAT(15),LAMBAR(15),MSE(15),LAM(15),W(15),SUMW(O:15),SUMLAM
@ ,LAMHAT(15)

IF (I .EQ. 1) OPEN (UNIT-3,FILE-'WEIGHTS.DAT')

* MAIN DO LOOP *

* ITERATIONS ON DEVELOPMENT PHASE, K *

TT(O)-O

SUMY(O)=O
SUMX(O)-O
SUMW(O)-O

SUMLAM - 0.
DO 300 K-1,NPHASE

* FIND THE WEIGHT FOR THIS PHASE
IF (WTP .EQ. 1) THEN

IF (I .EQ. 1) THEN
* READ IN WEIGHT

READ(3,*) W(K)
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ENDIF
ELSE

" COMPUTE WEIGHTS USING FRAC**(1/K) FORMULA
IF ((I .EQ. l).AND.(K .EQ. 1)) THEN

" READ IN FRACTION
READ(3,*) FRAC

ENDIF
W(K) = FRAC**(1./K)

ENDIF
SUMW(K)=SUMW(K- 1)+W(K)

IF (F(K) .LE. 1) THEN
Y(K)-ALOG( .5/1(J))

ELSE
Y(K)-ALOG((2.O*F(K)-l.0)/(2.0*T(K)))

ENDIF
TT(K)=TT(K-l)+T(K)
X (K) =ALOG (TI (K) )
SUMY(K)-SUMY(K-1 )+Y(K)*W(K)
SUMX(K)-SUMX(K-1)+X(K)*W(K)
XBAR(K)=SUMX(K)/SUMW(K)
YBAR(K)=SUMY(K)/SUMW(K)
SUMXY(K) = 0.
SUMX2(K) = 0.

DO 350 J=1,K
SUMXY(K)=SUMXY(K)+W(J)*(X(J) -XBAR(K) )*Y(J)
SUMX2(K)=SUMX2(K)+W(J)*(X(J) -XBAR(K) )**2

350 CONTINUE

IF (K .GT. 1) THEN
AHAT(K)-(-1 .O)*SUMXY(K)/SUMX2(K)
BHAT(K)=(l./(1.-AHAT(K)))*EXP(YBAR(K)+AHAT(K)*XBAR(K))
LAMHAT(K)=(l-AHAT(K))*BHAT(K)*TT(K)**(-AHAT(K))

ELSEIF (F(K) .GT. 1) 7AEN
LAMHAT(K)=(2.0*F(K)-1 .0)/(2.0*T(K))

ELSE
LAMHAT(K)-.5/T(K)

ENDIF

LAMBAR(K) =LAMBAR(K) +LAMHAT(K)
MSE(K) = MSE(K) + (LAMHAT(K)-LAM(K))**2

300 CONTINUE

310 FORMAT(3F6.1)
320 FORMAT(12,5F10.4)
330 FORMAT(A2,5A10)

END
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* SUBROUTINE #3 *

* FORTRAN MODEL FOR RELIABILITY IN CONTINUOUS PROCESS *
* PROGRAMMED BY :*
* LT S.L.NEGUS USN *

* THIS MODEL IS BASED ON THE MODIFIED AMSAA MODEL. *
* USING LEAST SQUARES REGRESSION. *
* THE CONTINUOUS FAILURE RATE IS ESTIMATED. *
* FAILURE DISCOUNTING IS USED. *

** ****** ***** ********* ************** ***** **** ** **************

* SUBROUTINE PROGRAM TO ESTIMATE LAMBDA USING MODIFIED AMSAA MODEL

SUBROUTINE MODL3(I,T,F,NPHASE,LAMBAR,MSE,LAM)

INTEGER N(15)
DOUBLE PRECISION T(15),TT(O:15),X(15),Y(15),SUMXY(15),
@ SUMY(15),XBAR(15),YBAR(15),SUMX(15),SUMX2(15),AHAT(15),
@ BHAT(15),LAMBAR(15),MSE(15),LAM(15),F(15,15),LAMHAT(15)

* MAIN DO LOOP *

* ITERATIONS ON DEVELOPMENT PHASE, K *

** ****** *** ****** ********** ******* ******** ** *

TT(O)=O

DO 200 K=I,NPHASE
SUMXY(K)=l
SUMY(K)=O
SUMX(K)=O
SUMX2(K)=O
TT(K)=TT(K-I)+T(K)

DO 250 J=1,K
IF (F(K,J) .LE. 1.5) THEN

Y(J)=ALOG(.5/T(J))
ELSE

Y(K)=ALOG((2.0*F(K,J)-I.0)/(2.0*T(J)))
ENDIF
X(K)=ALOG(TT(K))
SUMXY(K)=SUMXY(K)+X(J)*Y(J)
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SUMY(K)=SUMY(K)+Y(J)
SUMX(K)-SUMX(K)+X(J)
SUMX2(K)=SUMX2(K)+X(J)*X(J)

250 CONTINUE

XBAR(K)-SUMX(K)/K
YBAR(K)-SUMY(K)/K
IF (K .GT. 1) THEN

AHAT(K)-(SUMXY(K) -YBAR(K)*SUMX(K) )/(XBAR(K)*SUMX(K)
@- SUMX2(CK) )

BHAT(K)=(l./(l.-AHAT(K)))*EXP(YBAR(K)+AHAT(K)*XBAR(K))

LAMHAT(K)-(1-AHAT(K) )*BHAT(K)*TT(K)**( -AHAT(K))
ELSE IF (F(K,K) .GT. 1.) THEN

LAMHAT(K)-(2.0*F(K,K)-l .0)/(2.0*T(K))
ELSE

LAMHAT(K)= .5 / T(K)
ENDIF

LAMBAR(K) =LAMBAR(K)+LAMHAT(K)
MSE(K) = MSE(K) + (LAMHAT(K)-LAM(K))**2

200 CONTINUE

210 FORMAT(3F6.1)
220 FORMAT(I2,5FI0.4)
230 FORMAT(A2,5A10)

END

53



* SUBROUTINE #4 *

* FORTRAN MODEL FOR RELIABILITY IN CONTINUOUS PROCESS *
* PROGRAMMED BY :*
* LT S.L.NEGUS USN *

* THIS MODEL IS BASED ON THE AMSAA MODEL. *
* THE CONTINUOUS FAILURE RATE IS ESTIMATED. *

* SUBROUTINE PROGRAM TO ESTIMATE LAMBDA USING AMSAA MODEL

SUBROUTINE MODL4(I,X,R,NPHASE,LAMBAR,MSE,TRLAM,NFAIL)

INTEGER R(15),NPHASE,NFAIL,I,J,K,N
DOUBLE PRECISION X(O:150),LAMBAR(15),MSE(15),TRLAM(15),SUM
@ ,AHAT(15),BHAT(15),LAMHAT(15)

N=O
DO 110 K=1,NPHASE

N=N+R(K)
SUM = 0.0

IF (N .GT. 2) THEN

* CALCULATE SUMMATION FOR ESTIMATES

DO 100 J=1,N-l
IF (X(N)/X(J).GT.O.) THEN
SUM = SUM + ALOG(X(N)/X(J))

ELSE
PRINT *,'ERROR IN SUbROUTINE 4; NEG TIME AT REP ',I
STOP

ENDIF
100 CONTINUE

CALCULATE ESTIMATES OF PARAMETERS AND FAILURE RATE
IF (SUM.NE.O.) THEN
AHAT(K) - N/SUM

ELSE
PRINT *,'ERROR IN SUBROUTINE 4; BAD SUM REP ',I
STOP

ENDIF
BHAT(K) = N/(X(N)**AHAT(K))
LAMHAT(K) = AHAT(K)*BHAT(K)*X(N)**(AHAT(K)-I.0)

ELSE
LAMHAT (K) = N/X(N)

ENDIF
LAMBAR(K) = LAMBAR(K) + LAMHAT(K)
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MSE(K) = MSE(K) +(LAMHAT(K)-TRLAM(K))**2

110 CONTINUE

* ERROR CHECK: IS FINAL N = NFAIL?

IF (N .NE. NFAIL) THEN
PRINT *,'ERROR IN SUBROUTINE 4; DISAGREEMENT IN

@ # FAILURES',I
STOP

ENDIF

END

C. SAMPLE USER DATA FILE: CRG.DAT

5,10,500,12345.,1 NUMBER OF CAUSES, PHASES, REPS, SEED, WT SCHEME
.5,3. DISCOUNTING FRACTION, TIME INTERVAL
.0101 .2485 .1054 .0408 .1054 .1054 .0408 .1054 .2485 .0101
.2485 .1054 .0408 .1054 .0101 .0101 .1054 .0408 .1054 .2485
.1054 .0408 .1054 .0101 .2485 .2485 .0101 .1054 .0408 .1054
.0408 .1054 .0101 .2485 .1054 .1054 .2485 .0101 .1054 .0408
.1054 .0101 .2485 .1054 .0408 .0408 .1054 .2485 .0101 .1054

5,2 NUMBER OF ITEMS AND FAILURES IN PHASE 1
5,2 NUMBER OF ITEMS AND FAILURES IN PHASE 2
5,2 NUMBER OF ITEMS AND FAILURES IN PHASE 3
5,2 NUMBER OF ITEMS AND FAILURES IN PHASE 4
5,2 NUMBER OF ITEMS AND FAILURES IN PHASE 5
5,2 NUMBER OF ITEMS AND FAILURES IN PHASE 6
5,2 NUMBER OF ITEMS AND FAILURES IN PHASE 7
5,2 NUMBER OF ITEMS AND FAILURES IN PHASE 8
5,2 NUMBER OF ITEMS AND FAILURES IN PHASE 9
5,2 NUMBER OF ITEMS AND FAILURES IN PHASE 10
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0. SAMPLE OUTPUT FILES: AVGS.OUT AND NSES.OUT

1. AVGS.OUT

AVERAGE OF ESTIMATES FOR 500 REPS
TRUE LAMBDA MODEL 1 EST MODEL 2 EST MODEL 3 EST MODEL 4 EST

.51020000 .71328117 .71328117 .70052859 .95104156

.51020000 .76562159 .76562159 .74092911 1.50951350

.51020000 .56986163 .57546390 .52658969 .93848540

.51020000 .54309383 .54768820 .44106557 .81369015

.51020000 .50977294 .51543531 .35891453 .72585658

.51020000 .49092691 .49542132 .31900548 .67593184

.51020000 .48351571 .48732093 .28569272 .64586001

.51020000 .47925587 .55408753 .25654757 .62174413

.51020000 .46936838 .50655576 .23365031 .59856596

.51020000 .47131996 .50018151 .22722248 .58609344

2. MSES.OUT

MEAN SQUARE ERRORS FOR 500 REPS
MODEL I MSE MODEL 2 MSE MODEL 3 MSE MODEL 4 MSE
2.28307676 2.28307676 2.29055386 4.17982537
1.59749806 1.59749806 1.61366470 8.03775319
.24587519 .26528818 .30665339 .67145094
.18450393 .18848388 .25013123 .35297324
.09295514 .09939919 .12774927 .19431540
.07139884 .07607480 .10168462 .13055892
.05210290 .05293369 .09214781 .09232873
.04455537 .21215101 .09099763 .07024485
.03619510 .07225663 .09299745 .05374019
.03441349 .05769722 .09465450 .04438188
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APPENDIX C

This appendix contains the graphical presentation of the results from

all simulation runs conducted with the models presented and developed in

this thesis. The graphs are identical in format to those presented in

Chapter V. For completeness, those graphs presented in chapter 5 will be

repeated here with all the other graphs.

These graphs are organized according to the runs and the reliability

growth patterns within those runs. Each of these Patterns was evaluated

for four sets of regression weights and four sets of discounting

parameters as summarized in tables XII and XIII respectively.

Table XII: REGRESSION WEIGHTS USED

Run 1 2 3 4 5 6 7 8 9 !0
E .050 .224 .368 .473 .549 .607 .652 .688 .717 .741
F .250 .500 .620 .707 .758 .794 .820 .841 .857 .871
G .500 .707 .794 .841 .871 .891 .905 .917 .925 .933
H .100 .100 .110 .120 .130 .140 .150 .700 .800 .900

Notes:
1. E, F, and G used weighting method 1, w* = fl/,, f =W1
2. H useq weighting method 2, user selected weights.
3. All w, above are divided by the sum of weights when used in the
regression equations to ensure that weights always sum to one.
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Table XIII: DISCOUNTING PARAMETERS USED

Time Required
Run Fraction Between Discounting
E .50 3
F .50 15
G .25 3
H .25 15

The patterns are those introduced in Chapter IV. These patterns are

referred to by the numerical designator . The numerals are listed on the

figures and are summarized below:

" Pattern 1 - Convexly increasing reliability

" Pattern 2 - Reliability increasing rapidly, then decreasing then
increasing again

" Pattern 3 - Reliability increasing rapidly, then constant, then
increasing again

" Pattern 4 - Rapidly increasing to high reliability

" Pattern 5 - Rapidly increasing to moderately high reliability

" Pattern 6 - Constant moderately high reliability

" Pattern 7 - Constant moderate reliability

" Pattern 8 - Constant low reliability

Once again increasing reliability is synonymous with decreasing failure

rate.
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